C The following function is contributed by John Donners of the C Royal Netherlands Meteorological Institute C C The function calculates the neutral density from salinity and temperature. C It requires a library of routines which can be downloaded from the web. C The function also lists specific suggestions for compiling the function C under Solaris. We leave it to the user to work out how to compile for C other operating systems. C C ---------------------------------------------------------------------- * * neutral.F * * John Donners * Jun 19th 2002 * * Returns neutral density * * On a SUN Solaris system compile with: * * f77 -PIC -G -z text -z muldefs neutral.F gamma.a /opt/SUNWspro/lib/libM77.so * /opt/SUNWspro/lib/lib{f77compat,fsu}.so -o neutral.so * * The gamma library (gamma.a) should be compiled with the -KPIC option. * Make sure all libraries are 32 bits compiled (without the -xarch=v9 flag) * Make sure the file gamma.nc is with the exact path in read-nc.F * Changed code in gamma-n.f. Now also complains about out of oceanographic * range, but doesn't quit anymore. Instead now returns -99.2, and jumps to * the end of the subroutine * The gamma library can be found at: * ftp://ftp.marine.csiro.au/pub/jackett/gamma.tar.Z * * In this subroutine we provide information about * the function. The user configurable information * consists of the following: * * descr Text description of the function * * num_args Required number of arguments * * axis_inheritance Type of axis for the result * ( CUSTOM, IMPLIED_BY_ARGS, NORMAL, ABSTRACT ) * CUSTOM - user defined axis * IMPLIED_BY_ARGS - same axis as the incoming argument * NORMAL - the result is normal to this axis * ABSTRACT - an axis which only has index values * * piecemeal_ok For memory optimization: * axes where calculation may be performed piecemeal * ( YES, NO ) * * * For each argument we provide the following information: * * name Text name for an argument * * unit Text units for an argument * * desc Text description of an argument * * axis_influence Are this argument's axes the same as the result grid? * ( YES, NO ) * * axis_extend How much does Ferret need to extend arg limits relative to result * SUBROUTINE neutral_init(id) INCLUDE 'ferret_cmn/EF_Util.cmn' INTEGER id, arg * ********************************************************************** * USER CONFIGURABLE PORTION | * | * V CALL ef_set_desc(id,' neutral(salinity,temperature) returns'// . ' neutral density' ) CALL ef_set_num_args(id, 2) CALL ef_set_has_vari_args(id, NO) CALL ef_set_axis_inheritance(id, IMPLIED_BY_ARGS, . IMPLIED_BY_ARGS, IMPLIED_BY_ARGS, IMPLIED_BY_ARGS) CALL ef_set_piecemeal_ok(id, NO, NO, NO, NO) arg = 1 CALL ef_set_arg_name(id, arg, 'S') CALL ef_set_axis_influence(id, arg, YES, YES, YES, YES) arg = 2 CALL ef_set_arg_name(id, arg, 'T') CALL ef_set_axis_influence(id, arg, YES, YES, YES, YES) CALL ef_set_num_work_arrays(id,3) * ^ * | * USER CONFIGURABLE PORTION | * ********************************************************************** RETURN END SUBROUTINE neutral_work_size(id) INCLUDE 'ferret_cmn/EF_Util.cmn' INCLUDE 'ferret_cmn/EF_mem_subsc.cmn' INTEGER id * ********************************************************************** * USER CONFIGURABLE PORTION | * | * V * * Set the work arrays, X/Y/Z/T dimensions * * ef_set_work_array_dims(id,array #,xlo,ylo,zlo,tlo,xhi,yhi,zhi,thi) * INTEGER mz1, mz2, mz3 INTEGER iwork INTEGER arg_lo_ss(4,1:EF_MAX_ARGS), arg_hi_ss(4,1:EF_MAX_ARGS), . arg_incr(4,1:EF_MAX_ARGS) CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr) * Allocate double the dimension of the input arguments for work arrays * which will be REAL*8 mz1 = 1 + ABS(arg_hi_ss(X_AXIS,ARG1) - arg_lo_ss(X_AXIS,ARG1)) mz2 = 1 + ABS(arg_hi_ss(Y_AXIS,ARG1) - arg_lo_ss(Y_AXIS,ARG1)) mz3 = 1 + ABS(arg_hi_ss(Z_AXIS,ARG1) - arg_lo_ss(Z_AXIS,ARG1)) * lon iwork = 1 CALL ef_set_work_array_dims (id, iwork, 1, 1, 1, 1, . 2*mz1, 1, 1, 1) * lat iwork = 2 CALL ef_set_work_array_dims (id, iwork, 1, 1, 1, 1, . 1, 2*mz2, 1, 1) * z iwork = 3 CALL ef_set_work_array_dims (id, iwork, 1, 1, 1, 1, . 1, 1, 2*mz3, 1) * ^ * | * USER CONFIGURABLE PORTION | * ********************************************************************** RETURN END * * In this subroutine we compute the result * SUBROUTINE neutral_compute(id, arg_1, arg_2, result) INCLUDE 'ferret_cmn/EF_Util.cmn' INCLUDE 'ferret_cmn/EF_mem_subsc.cmn' INTEGER id REAL bad_flag(EF_MAX_ARGS), bad_flag_result REAL arg_1(mem1lox:mem1hix, mem1loy:mem1hiy, . mem1loz:mem1hiz, mem1lot:mem1hit) REAL arg_2(mem2lox:mem2hix, mem2loy:mem2hiy, . mem2loz:mem2hiz, mem2lot:mem2hit) REAL result(memreslox:memreshix, memresloy:memreshiy, . memresloz:memreshiz, memreslot:memreshit) REAL*8 lon(wrk1lox:wrk1hix/2,wrk1loy:wrk1hiy,wrk1loz:wrk1hiz, . wrk1lot:wrk1hit) REAL*8 lat(wrk2lox:wrk2hix,wrk2loy:wrk2hiy/2,wrk2loz:wrk2hiz, . wrk2lot:wrk2hit) REAL*8 depth(wrk3lox:wrk3hix,wrk3loy:wrk3hiy,wrk3loz:wrk3hiz/2, . wrk3lot:wrk3hit) * After initialization, the 'res_' arrays contain indexing information * for the result axes. The 'arg_' arrays will contain the indexing * information for each variable's axes. INTEGER res_lo_ss(4), res_hi_ss(4), res_incr(4) INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS), . arg_incr(4,EF_MAX_ARGS) * ********************************************************************** * USER CONFIGURABLE PORTION | * | * V INTEGER i,j,k,l INTEGER i1, j1, k1, l1 INTEGER i2, j2, k2, l2 INTEGER ilon, jlat, kdepth REAL*8 dum1,dum2, res CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr) CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr) CALL ef_get_bad_flags(id, bad_flag, bad_flag_result) CALL ef_get_coordinates(id, ARG1, X_AXIS, . arg_lo_ss(X_AXIS, ARG1), arg_hi_ss(X_AXIS, ARG1), lon) CALL ef_get_coordinates(id, ARG1, Y_AXIS, . arg_lo_ss(Y_AXIS, ARG1), arg_hi_ss(Y_AXIS, ARG1), lat) CALL ef_get_coordinates(id, ARG1, Z_AXIS, . arg_lo_ss(Z_AXIS, ARG1), arg_hi_ss(Z_AXIS, ARG1), depth) i1 = arg_lo_ss(X_AXIS,ARG1) i2 = arg_lo_ss(X_AXIS,ARG2) ilon = 1 DO 400 i=res_lo_ss(X_AXIS), res_hi_ss(X_AXIS) j1 = arg_lo_ss(Y_AXIS,ARG1) j2 = arg_lo_ss(Y_AXIS,ARG2) jlat = 1 DO 300 j=res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS) k1 = arg_lo_ss(Z_AXIS,ARG1) k2 = arg_lo_ss(Z_AXIS,ARG2) kdepth = 1 DO 200 k=res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS) l1 = arg_lo_ss(T_AXIS,ARG1) l2 = arg_lo_ss(T_AXIS,ARG2) DO 100 l=res_lo_ss(T_AXIS), res_hi_ss(T_AXIS) IF ( arg_1(i1,j1,k1,l1) .EQ. bad_flag(1) .OR. . arg_2(i2,j2,k2,l2) .EQ. bad_flag(2) ) THEN result(i,j,k,l) = bad_flag_result ELSE call gamma_n(dble(arg_1(i1,j1,k1,l1)), . dble(arg_2(i2,j2,k2,l2)),depth(1,1,kdepth,1),1, . lon(ilon,1,1,1),lat(1,jlat,1,1),res,dum1,dum2) c print*,'s,t,p,lon,lat,res=', c . dble(arg_1(i1,j1,k1,l1)), c . dble(arg_2(i2,j2,k2,l2)),depth(1,1,kdepth,1), c . lon(ilon,1,1,1),lat(1,jlat,1,1),res result(i,j,k,l)=real(res) END IF l1 = l1 + arg_incr(T_AXIS,ARG1) l2 = l2 + arg_incr(T_AXIS,ARG2) 100 CONTINUE k1 = k1 + arg_incr(Z_AXIS,ARG1) k2 = k2 + arg_incr(Z_AXIS,ARG2) kdepth = kdepth + 1 200 CONTINUE j1 = j1 + arg_incr(Y_AXIS,ARG1) j2 = j2 + arg_incr(Y_AXIS,ARG2) jlat = jlat + 1 300 CONTINUE i1 = i1 + arg_incr(X_AXIS,ARG1) i2 = i2 + arg_incr(X_AXIS,ARG2) ilon = ilon + 1 400 CONTINUE * ^ * | * USER CONFIGURABLE PORTION | * ********************************************************************** RETURN END