* * compressj_by.F * * Steve Hankin * 12/27/2000 * * Compress argument 1 along axis J by the mask given in argument 2 * Argument 2 may be multidimensional * In this subroutine we provide information about * the function. The user configurable information * consists of the following: * * descr Text description of the function * * num_args Required number of arguments * * axis_inheritance Type of axis for the result * ( CUSTOM, IMPLIED_BY_ARGS, NORMAL, ABSTRACT ) * CUSTOM - user defined axis * IMPLIED_BY_ARGS - same axis as the incoming argument * NORMAL - the result is normal to this axis * ABSTRACT - an axis which only has index values * * piecemeal_ok For memory optimization: * axes where calculation may be performed piecemeal * ( YES, NO ) * * * For each argument we provide the following information: * * name Text name for an argument * * unit Text units for an argument * * desc Text description of an argument * * axis_influence Are this argument's axes the same as the result grid? * ( YES, NO ) * * axis_extend How much does Ferret need to extend arg limits relative to result * SUBROUTINE compressj_by_init(id) INCLUDE 'ferret_cmn/EF_Util.cmn' INTEGER id, arg * ********************************************************************** * USER CONFIGURABLE PORTION | * | * V CALL ef_set_desc(id,'Compress arg1 by (multi-D) mask in arg 2' ) CALL ef_set_num_args(id, 2) CALL ef_set_has_vari_args(id, NO) CALL ef_set_axis_inheritance(id, IMPLIED_BY_ARGS, ABSTRACT, . IMPLIED_BY_ARGS, IMPLIED_BY_ARGS) CALL ef_set_piecemeal_ok(id, NO, NO, NO, NO) arg = 1 CALL ef_set_arg_name(id, arg, 'dat') CALL ef_set_arg_desc(id, arg, 'variable to compress on J axis') CALL ef_set_axis_influence(id, arg, YES, NO, YES, YES) arg = 2 CALL ef_set_arg_name(id, arg, 'mask') CALL ef_set_arg_desc(id, arg, . 'valid/bad points guiding compression (multi-D)') CALL ef_set_axis_influence(id, arg, YES, NO, YES, YES) * ^ * | * USER CONFIGURABLE PORTION | * ********************************************************************** RETURN END * * In this subroutine we provide information about the lo and hi * limits associated with each abstract or custom axis. The user * configurable information consists of the following: * * lo_ss lo subscript for an axis * * hi_ss hi subscript for an axis * SUBROUTINE compressj_by_result_limits(id) INCLUDE 'ferret_cmn/EF_Util.cmn' INTEGER id * ********************************************************************** * USER CONFIGURABLE PORTION | * | * V INTEGER my_hi_j, lmsk INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS), . arg_incr(4,EF_MAX_ARGS) * * Use utility functions to get context information about the arguments. * CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr) my_hi_j = arg_hi_ss(Y_AXIS,1) - arg_lo_ss(Y_AXIS,1) + 1 lmsk = arg_hi_ss(Y_AXIS,2) - arg_lo_ss(Y_AXIS,2) + 1 IF ( lmsk .LT. my_hi_j ) my_hi_j = lmsk CALL ef_set_axis_limits(id, Y_AXIS, 1, my_hi_j) * ^ * | * USER CONFIGURABLE PORTION | * ********************************************************************** RETURN END * * In this subroutine we compute the result * SUBROUTINE compressj_by_compute(id, arg_1, arg_2, result) INCLUDE 'ferret_cmn/EF_Util.cmn' INCLUDE 'ferret_cmn/EF_mem_subsc.cmn' INTEGER id REAL bad_flag(EF_MAX_ARGS), bad_flag_result REAL arg_1(mem1lox:mem1hix, mem1loy:mem1hiy, . mem1loz:mem1hiz, mem1lot:mem1hit) REAL arg_2(mem2lox:mem2hix, mem2loy:mem2hiy, . mem2loz:mem2hiz, mem2lot:mem2hit) REAL result(memreslox:memreshix, memresloy:memreshiy, . memresloz:memreshiz, memreslot:memreshit) * After initialization, the 'res_' arrays contain indexing information * for the result axes. The 'arg_' arrays will contain the indexing * information for each variable's axes. INTEGER res_lo_ss(4), res_hi_ss(4), res_incr(4) INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS), . arg_incr(4,EF_MAX_ARGS) * ********************************************************************** * USER CONFIGURABLE PORTION | * | * V INTEGER i,j,k,l INTEGER i1, j1, k1, l1 INTEGER i2, j2, k2, l2 INTEGER nout, jlo CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr) CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr) CALL ef_get_bad_flags(id, bad_flag, bad_flag_result) jlo = res_lo_ss(Y_AXIS) * pre-fill the entire output result with missing value flags * (since each I-sequence in mask may have different number of valid pts) DO 40 l=res_lo_ss(T_AXIS), res_hi_ss(T_AXIS) DO 30 k=res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS) DO 20 i=res_lo_ss(X_AXIS), res_hi_ss(X_AXIS) DO 10 j=jlo, res_hi_ss(Y_AXIS) 10 result(i,j,k,l) = bad_flag_result 20 CONTINUE 30 CONTINUE 40 CONTINUE * fill in the points as specified by the mask i1 = arg_lo_ss(X_AXIS,ARG1) i2 = arg_lo_ss(X_AXIS,ARG2) DO 400 i=res_lo_ss(X_AXIS), res_hi_ss(X_AXIS) k1 = arg_lo_ss(Z_AXIS,ARG1) k2 = arg_lo_ss(Z_AXIS,ARG2) DO 300 k=res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS) l1 = arg_lo_ss(T_AXIS,ARG1) l2 = arg_lo_ss(T_AXIS,ARG2) DO 200 l=res_lo_ss(T_AXIS), res_hi_ss(T_AXIS) nout = 0 j1 = arg_lo_ss(Y_AXIS,ARG1) j2 = arg_lo_ss(Y_AXIS,ARG2) DO 100 j=jlo, res_hi_ss(Y_AXIS) IF ( arg_2(i2,j2,k2,l2) .NE. bad_flag(2) ) THEN IF ( arg_1(i1,j1,k1,l1) .EQ. bad_flag(1) ) THEN result(i,jlo+nout,k,l) = bad_flag_result ELSE result(i,jlo+nout,k,l) = arg_1(i1,j1,k1,l1) END IF nout = nout + 1 ENDIF j1 = j1 + arg_incr(Y_AXIS,ARG1) j2 = j2 + arg_incr(Y_AXIS,ARG2) 100 CONTINUE l1 = l1 + arg_incr(T_AXIS,ARG1) l2 = l2 + arg_incr(T_AXIS,ARG2) 200 CONTINUE k1 = k1 + arg_incr(Z_AXIS,ARG1) k2 = k2 + arg_incr(Z_AXIS,ARG2) 300 CONTINUE i1 = i1 + arg_incr(X_AXIS,ARG1) i2 = i2 + arg_incr(X_AXIS,ARG2) 400 CONTINUE * ^ * | * USER CONFIGURABLE PORTION | * ********************************************************************** RETURN END