Ensembles of Forecast Model Run Collections using pyFerret or Ferret

Steve Hankin
UW/JISAO

April 2016
Ensembles of FMRCs

A Forecast Model Run Collection

Each run, 12 months

Every month, another run
The collected time axes are a 2D field

<table>
<thead>
<tr>
<th>Model Run Time Axis</th>
<th>Forecast Initialization Axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUN 1</td>
<td>RUN 2</td>
</tr>
<tr>
<td>1</td>
<td>744.</td>
</tr>
<tr>
<td>2</td>
<td>1440.</td>
</tr>
<tr>
<td>3</td>
<td>2184.</td>
</tr>
<tr>
<td>4</td>
<td>2904.</td>
</tr>
<tr>
<td>5</td>
<td>3648.</td>
</tr>
<tr>
<td>6</td>
<td>4368.</td>
</tr>
<tr>
<td>7</td>
<td>5112.</td>
</tr>
<tr>
<td>8</td>
<td>5856.</td>
</tr>
<tr>
<td>9</td>
<td>6576.</td>
</tr>
<tr>
<td>10</td>
<td>7320.</td>
</tr>
<tr>
<td>11</td>
<td>8040.</td>
</tr>
<tr>
<td>12</td>
<td>8784.</td>
</tr>
</tbody>
</table>
Define FMRCs of each ensemble member(*):

yes? FMRC e1 = nmme_1_files
yes? FMRC e2 = nmme_2_files
yes? FMRC e3 = nmme_3_files
.
.
yes? FMRC e12 = nmme_12_files

... and then define the ensemble:

yes? ENSEMBLE nmme = e1, e2,e3, ... ,e12
‘Diagonal form’ of the FMRCs; the ensemble average

yes? LET diag = ts[GT(time)=TF_CAL_T]
yes? SHADE/X=180/Y=0 diag[M=@ave]

twelve ensemble members, averaged
The individual forecast time series at this point

yes? SET REGION/x=180/y=0

yes? PLOT/ALONG=t/TITLE="Individual forecasts" diag

yes? PLOT/OVER/COLOR=red diag[m=@min,n=@min],diag[m=@max,n=@max]

1st ensemble member, only
‘Skill form’ of the FMRCs

LET ts_lead_view = ts[gt(time)=TF_CAL_T,gf(time)=TF_LAG_F]
FILL/X=180/Y=0 ts_lead_view [m=@ave]

Can we quantify how well the model did?
LET ts_fe = ts_lead_view - ts_lead_view[N=1]
LET ts_stddev = ts_lead_view[N=1,L=@std]
LET/TITLE=... ts_nfe = ts_fe/ts_stddev
FILL/Y=180/Y=0 ts_nfe[m=@ave]

Normalized forecast error

How long in advance were our forecasts “good”?
Say, “good” == abs. val. of error within 0.5 std dev of ‘t_init’ value

LET ts_abs = ABS(ts_nfe)
LET ts_skill_day = ts_abs[F=@loc:.5]
LET/title="…” ts_skill = ts_skill_day/30.3
PLOT/X=180/Y=0 ts_skill[m=@ave]

“F=@loc:.5” finds the location where the curve crosses .5

Lead time (months) for achieving “good” forecast error

If we time-average this we have a point measure of ensemble forecast skill

1st ensemble member, only
yes? FILL ts_skill[M=@ave,L=@ave]

What accounts for this? winds?

1st ensemble member

Global “good” forecast lead time (months)

of months lead achieving 0.5 std dev
How robust is our forecast skill across ensemble members?

The ensemble standard deviation.