Working with Forecast Models in PyFerret and Ferret

June 2015

A plot to illustrate the data output by a Forecast Model Run Collection (FMRC). Every colored cell is a model snapshot.

Each model output (starting at one initialization time) is a "dataset". How to aggregate these many individual datasets into a single dataset of higher dimensionality?

- use the Ferret command
 DEFINE AGGREGATION/F
 or
- serve the collection via OPeNDAP using Unidata's THREDDS Data Server (TDS)

many 4D files → become a single 5D dataset

Native ("compact") form of FMRC

In the native, compact form the time step values are a 2D variable. Note that the same forecasted date/time occurs at lags in multiple forecast runs.

	Forecast Series Axis						
	RUN 1	RUN 2	RUN3	RUN4	RUN5	RUN6	RUN7
1	744.	2184.	3648.	5112.	6576.	8040.	9528.
2	1440.	2904.	4368.	5856.	7320.	8784.	10200.
3	2184.	3648.	5112	6576.	8040.	9528.	10944.
4	2904.	4368.	5856.	7320.	8784.	10200.	11664.
5	3648.	5112	6576.	8040.	9528.	10944.	12408.
6	4368.	5856.	7320.	8784.	10200.	11664.	13128.
7	5112,	6576.	8040.	9528.	10944.	12408.	13872.
8	5856.	7320.	8784.	10200.	11664.	13128.	14616.
9	6576.	8040.	9528.	10944.	12408.	13872.	15336.
10	7320.	8784.	10200.	11664.	13128.	14616.	16080.
11	8040.	9528.	10944.	12408.	13872.	15336.	16800.
12	8784.	10200.	11664.	13128.	14616.	16080.	17544.

netCDF CDL markup language showing how 'auxiliary coordinates' are defined in a CF file

Ferret syntax: how to regrid using an auxiliary coordinate

- Depth: temp[GZ(density) = My_density_axis]
- Time2d: temp[GT(tf_times)= TF_CAL_T @FMRC]

Regridding in a manner analogous to a depthto-density transformation, we convert the FMRC compact form into diagonal form

Similarly also replace the Forecast time axis with a lead (lag) time axis

temp[GT(tf_times)=TF_CAL_T ,<mark>GF(tf_times)=TF_LAG_</mark>F]

That's the background.

Now, what does it feel like to analyze forecast model outputs using Ferret?

Start up the dataset as you would any other. "N" is the forecast index

> pyferret

yes? USE "<u>http://server/path/myfiles/TAUX_fmrc.ncd</u>" ! aggregation via TDS
yes? FILL tau_x[L=1,N=1]

yes? FILL/N=1 tau_x[L=@std]

SHADE/X=180/Y=0 tau_x[GT(times)=TF_CAL_T]

View the forecast series at 180W, ON in 'diagonal' form

FILL/X=180/Y=0 tau_x[GT(times)=TF_CAL_T,GF(times)=TF_LAG_F]

Can we quantify how good our forecasts were?

LET tau_tf = tau_x[gt(times)=TF_CAL_T,gf(times)=TF_LAG_F] LET tau_fe = tau_tf - tau_tf[N=1] FILL/X=180/Y=0 tau_fe

LET tau_stddev = tau_tf[N=1,L=@std] LET/TITLE=... tau_nfe = tau_fe/tau_stddev FILL/Y=180/Y=0/T=... tau_nfe

Lets say "good" == abs. val. of error within 0.5 std dev of final LET tau_abs = ABS(tau_nfe) value LET tau_fcst_lead = tau_abs[F=@loc:.5] / 730 LET/TITLE="..." tau_skill = MISSING(tau_fcst_lead,8) ! cap at 8 mo PLOT/X=180/Y=0 tau_skill

16

The average lead time at which the forecast becomes accurate to 0.5 std dev at X=180, Y=0

LIST /X=180/Y=0 tau_skill[L=@ave] VARIABLE : # of months lead achieving 0.5 std dev FILENAME : TAUX_fmrc.ncd FILEPATH : http://dunkel.pmel.noaa.gov:8940/thredds/dodsC/andrew/taux/ LONGITUDE : 178.8E LATITUDE : 1S TIME : 17-JAN-1996 12:00 to 16-DEC-1999 00:00 (averaged) 4.165

Now lets see how our skill is distributed globally

